Properties of DFT

1. If $x(n)$ and $X(k)$ are an N-point DFT pair, then $x(n+N)=x(n)$
a) True
b) False

Answer: a

Explanation: We know that the $\underset{N-1}{\exp } \underset{\sim}{\text { ession }}$ for an DFT is given as

$$
X K=x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

Now take $\mathbf{x}(\mathbf{n})=\mathbf{x}(\mathbf{n}+\mathbf{N}) \Rightarrow$

$$
\begin{gathered}
X_{1} K=\underset{\substack{N-1 \\
n=0}}{x(n+N) e^{N}} \quad \underline{-j 2 \pi k n} \\
X_{1} K=\underset{n=0}{x-1} e^{\frac{-j 2 \pi k l}{N}}=X(K)
\end{gathered}
$$

Let $\mathbf{n}+\mathbf{N}=\boldsymbol{l}$

2. If $x(n)$ and $X(k)$ are an N-point DFT pair, then $X(k+N)=$?
a) $\mathrm{X}(-\mathrm{k})$
b) $-\mathrm{X}(\mathrm{k})$
c) $X(k)$
d) None of the mentioned

Answer: c
Explanation: We know that

$$
x n=\frac{1}{N}_{k=0}^{N-1} X(K) e^{j \frac{j \pi k n}{N}}
$$

let $X K=X k+N \Rightarrow$

$$
x_{1} n={\underset{N}{k=0}}_{N-1}^{N} X K+N e^{\frac{j 2 \pi k n}{N}}=x(n)
$$

Therefore, we have $X(k)=X(k+N)$
3. If $\mathrm{X} 1(\mathrm{k})$ and $\mathrm{X} 2(\mathrm{k})$ are the N -point DFTs of $\mathrm{x} 1(\mathrm{n})$ and $\mathrm{x} 2(\mathrm{n})$ respectively, then what is the N-point DFT of $x(n)=a x 1(n)+b x 2(n)$?
a) $\mathrm{X} 1(\mathrm{ak})+\mathrm{X} 2(\mathrm{bk})$
b) $\mathrm{aX} 1(\mathrm{k})+\mathrm{bX} 2(\mathrm{k})$
c) $e^{a k} X 1(k)+e^{b k} X 2(k)$
d) None of the mentioned

Answer: b
Explanation: We know that, the DFT of a signal $\mathrm{x}(\mathrm{n})$ is given by the expression

Properties of DFT

$$
X K=\underset{\substack{n=0}}{N_{n-1}} x(n) e^{\frac{-j 2 \pi k n}{N}}
$$

Given $x(n)=a x_{1}(n)+b x_{2}(2)$

$$
\begin{aligned}
& X K=a x_{1}(n)+b x_{2}(2) e \quad \frac{-j 2 \pi n}{N} \\
& { }_{N-1}{ }^{n=0 \quad N-1} \\
& X K=a x_{1} n e^{\frac{-j 2 d n}{N}}+b x_{2}(2) e^{\frac{-j 2 \pi k n}{N}} \\
& n=0 \\
& N-1 \\
& X K=a x_{1} n e \\
& n=0 \\
& X K=a X_{1} K+b X_{2} K
\end{aligned}
$$

4. If $x(n)$ is a complex valued sequence given by $x(n)=x R(n)+j x I(n)$, then what is the DFT of $x_{R}(n)$?

$$
\begin{array}{ll}
& \begin{array}{l}
N \\
\text { a) } x_{R} n \cos \\
n=0 \\
N
\end{array} \\
\text { b) } x_{R} n \cos & \frac{2 \pi k n}{N}+x_{I} n \sin \frac{2 \pi k n}{N} \\
\begin{array}{ll}
n=0 \\
N-1 \\
N
\end{array} & \frac{2 \pi k n}{N}-x_{I} n \sin \frac{2 \pi k n}{N} \\
\text { c) } x_{R} n \cos & \frac{2 \pi k n}{N}-n \sin \frac{2 \pi k n}{N} \\
n=0 \\
& N-1 \\
\text { d) } x_{R} n \cos & \frac{2 \pi k n}{N}+x_{I} n \sin \frac{2 \pi k n}{N}
\end{array}
$$

Answer: d
Explanation: Given $\mathrm{x}(\mathrm{n})=\mathrm{x}_{\mathrm{R}}(\mathrm{n})+\mathrm{j} \mathrm{x}_{\mathrm{I}}(\mathrm{n})=>\mathrm{x}_{\mathrm{R}}(\mathrm{n})=1 / 2(\mathrm{x}(\mathrm{n})+\mathrm{x} *(\mathrm{n}))$ Substitute the above equation in the DFT expression
Thus we get,

$$
x_{n=0}^{N-1} n \cos \frac{2 \pi k n}{N}+x_{I} n \sin \frac{2 \pi k n}{N}
$$

Properties of DFT

5. If $x(n)$ is a real sequence and $X(k)$ is its N-point DFT, then which of the following is true?
a) $X(N-k)=X(-k)$
b) $\mathrm{X}(\mathrm{N}-\mathrm{k})=\mathrm{X}^{*}(\mathrm{k})$
c) $X(-k)=X^{*}(k)$
d) All of the mentioned

Answer: d
Explanation: We know that

$$
\begin{gathered}
X \quad K \quad{ }_{n=0}^{N-1}=x(n) e^{\frac{-j 2 \pi k n}{N}} \\
X N-K={ }_{n=0}^{N-1} x(n) e^{\frac{-j 2 \pi N-K n}{N}} \\
X^{*} K=X(-k)
\end{gathered}
$$

Now

Therefore,

$$
\mathbf{X}(\mathbf{N}-\mathrm{k})=\mathbf{X} *(\mathbf{k})=\mathbf{X}(-k)
$$

6. If $x(n)$ is real and even, then what is the DFT of $x(n)$?
a) $\underset{n=0}{N-1} x \operatorname{n} \dot{\sin } \frac{2 \pi k n}{N}$

$$
c)-j{ }_{n=0}^{N-1} x n \sin \frac{2 \pi k n}{N}
$$

b)

d) None of the mentioned

Answer: b
Explanation: Given $x(n)$ is real and even, that is $x(n)=x(N-n)$
We know that $\mathrm{X}_{\mathrm{I}}(\mathrm{k})=0$. Hence the DFT reduces to

$$
X K=\sum_{n=0}^{N-1} x n \cos \frac{2 \pi k n}{N}
$$

7. If $x(n)$ is real and odd, then what is the IDFT of the given sequence?
a) $j \frac{1}{N}{ }_{k=0}^{N-1} X(K) \sin \frac{2 \pi k n}{N}$
b) $\frac{1}{N}{ }_{k=0}^{N-1} X K ๔ \frac{2 \pi k n}{N}$
c) $-j \frac{1}{N}_{k=0}^{N-1} X K \sin \frac{2 \pi k n}{N}$
d) None of the mentioned

Properties of DFT

Answer: a

Explanation: If $x(n)$ is real and odd, that is $x(n)=-x(N-n)$, then $X R(k)=0$. Hence $X(k)$ is purely imaginary and odd. Since $\operatorname{XR}(k)$ reduces to zero, the IDFT reduces to

$$
x n=j \frac{1}{N}_{k=0}^{N-1} X(K) \sin \frac{2 \pi k n}{N}
$$

8. If $x 1(n), x 2(n)$ and $x 3(m)$ are three sequences each of length N whose DFTs are given as $\mathrm{X} 1(\mathrm{k}), \mathrm{X} 2(\mathrm{k})$ and $\mathrm{X} 3(\mathrm{k})$ respectively and $\mathrm{X} 3(\mathrm{k})=\mathrm{X} 1(\mathrm{k}) . \mathrm{X} 2(\mathrm{k})$, then what is the expression for $\mathrm{x} 3(\mathrm{~m})$?

$$
\begin{aligned}
& N-1 \\
& N-1 \\
& \text { a) } \boldsymbol{x}_{\mathbf{n}=0} \boldsymbol{n} \quad x_{2} \quad \boldsymbol{m}+\boldsymbol{n} \\
& N-1 \\
& \text { c) } x_{n=0} x_{1} n n \quad x_{2}(m-n)_{N}
\end{aligned}
$$

Answer: c

Explanation: If $\mathrm{x} 1(\mathrm{n}), \mathrm{x} 2(\mathrm{n})$ and $\mathrm{x} 3(\mathrm{~m})$ are three sequences each of length N whose DFTs are given as $\mathrm{X} 1(\mathrm{k}), \mathrm{X} 2(\mathrm{k})$ and $\mathrm{X} 3(\mathrm{k})$ respectively and $\mathrm{X} 3(\mathrm{k})=\mathrm{X} 1(\mathrm{k}) \cdot \mathrm{X} 2(\mathrm{k})$, then according to the multiplication property of DFT we have $x 3(\mathrm{~m})$ is the circular convolution of $\mathrm{x} 1(\mathrm{n})$ and $\mathrm{x} 2(\mathrm{n})$.
9. What is the circular convolution of the sequences $x 1(n)=\{2,1,2,1\}$ and $x 2(n)=\{1,2,3,4\}$?
a) $\{14,14,16,16\}$
b) $\{16,16,14,14\}$
c) $\{2,3,6,4\}$
d) $\{14,16,14,16\}$

Answer: d

Explanation: We know that the circular convolution of two sequences is given by the expression

$$
x m=\underset{n=0}{x_{1} n x_{2}(m-n)_{N}}
$$

For $\mathrm{m}=0, \mathrm{x} 2((-\mathrm{n})) 4=\{1,4,3,2\}$
For $m=1, x 2((1-n)) 4=\{2,1,4,3\}$
For $\mathrm{m}=2, \mathrm{x} 2((2-\mathrm{n})) 4=\{3,2,1,4\}$
For $m=3, x 2((3-n)) 4=\{4,3,2,1\}$
Now we get $x(m)=\{14,16,14,16\}$.
10. What is the circular convolution of the sequences $x 1(n)=\{2,1,2,1\}$ and $x 2(n)=\{1,2,3,4\}$, find using the DFT and IDFT concepts?
a) $\{16,16,14,14\}$
b) $\{14,16,14,16\}$
c) $\{14,14,16,16\}$
d) None of the these

Properties of DFT

Answer: b

Explanation: Given $\mathrm{x} 1(\mathrm{n})=\{2,1,2,1\}=>\mathrm{X} 1(\mathrm{k})=[6,0,2,0]$ Given $x 2(n)=\{1,2,3,4\}=>X 2(k)=[10,-2+j 2,-2,-2-j 2]$
when we multiply both
DFTs we obtain the product
$\mathrm{X}(\mathrm{k})=\mathrm{X} 1(\mathrm{k}) \cdot \mathrm{X} 2(\mathrm{k})=[60,0,-4,0]$
By applying the IDFT to the above sequence, we get

$$
x(n)=\{14,16,14,16\} .
$$

11. If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of a sequence $\mathrm{x}(\mathrm{n})$, then circular time shift property is that N point DFT of $\mathrm{x}((\mathrm{n}-\mathrm{l}))_{\mathrm{N}}$ is $\mathrm{X}(\mathrm{k}) \mathrm{e}^{-\mathrm{j} 2 \pi \mathrm{k} / \mathrm{N}}$.
a) True
b) False

Answer: a
Explanation: According to the circular time shift property of a sequence, If $\mathrm{X}(\mathrm{k})$ is the N point DFT of a sequence $x(n)$, then the N-pint DFT of $x((n-1))_{N}$ is $X(k) e^{-j 2 \pi k l / N}$.
12. If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of a sequence $\mathrm{x}(\mathrm{n})$, then what is the DFT of $\mathrm{x} *(\mathrm{n})$?
a) $\mathrm{X}(\mathrm{N}-\mathrm{k})$
b) $\mathrm{X}^{*}(\mathrm{k})$
c) $X^{*}(N-k)$
d) None of the mentioned

Answer:c

According to the complex conjugate property of DFT, we have if $\mathrm{X}(\mathrm{k})$ is the N -point DFT of a sequence $x(n)$, then what is the DFT of $x^{*}(n)$ is $X^{*}(N-k)$.

